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Summary. Full configuration interaction (FCI) geometry optimizations have been 
performed for the X3B1, alAt, baB~ and clAa electronic states of CH2, the XZB1 
and AZA1 electronic states of NHz and the X1A'I electronic state of BH3 using 
a DZP basis set. The results are compared with those obtained using the MRD-CI 
method at different levels of theoretical treatment. The agreement between the 
geometrical parameters optimized with the FCI and MRD-CI methods is very 
good. 
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1 Introduction 

The computation of stationary points on the potential energy hypersurface of 
different electronic states of molecular systems has been one of the main goals of 
quantum chemistry and many papers in the literature deal with this topic. The use 
of gradient techniques has made it feasible to find stationary points for polyatomic 
molecules using polyatomic wave functions with different levels of sophistication. 
At this point it would be convenient to have a benchmark of full configuration 
interaction (FCI) optimized geometries in order to compare different theoretical 
approaches. 

In the past few years, a series of benchmark FCI calculations have been carried 
out on a set of model electronic systems at different nuclear geometries [-1-15]. 
Such computations have been done using atomic orbitals (AO) basis sets up to 
double zeta plus polarization (DZP) quality and the results have been very useful to 
calibrate the accuracy of several electron correlation treatments. In this sense, 
Bauschlicher and coworkers I-3-13] have provided a detailed comparison of FCI 
results with those of other methods. The benchmarks have shown that a multirefer- 
ence configuration interaction treatment gives a reasonable estimate of FCI ener- 
gies, even at geometries far from equilibrium. Knowles et al. [16] have compared 
FCI results with multireference single and double excitation configuration inter- 
action (MRD-CI) ones, while Illas et al. [17] compared FCI with CIPSI results. 
The only computations of stationary points at the FCI level, as far as we know, 
have been reported by Bauschlicher et al. [7] on the collinear transition state for 
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the reaction F +Hz --* HF +H, where a grid of points spanning the region of the 
saddle point was computed and fitted to a polynomial, and the thermolecular 
reaction of 3H2 [14]. 

In the present work, we have carried out FCI geometry optimizations by using 
gradient techniques, for several electronic states (ground and excited), using a DZP 
basis set, with the aim that these results would serve as a calibration for other 
methods. Moreover, the FCI results are compared with MRD-CI [-18-20] calcu- 
lations performed at different levels of theoretical treatment. 

The MRD-CI space is constructed considering all single and double excitations 
from a given set of reference electronic configurations. In constructing this space it 
is important to determine which set of reference configurations is necessary to 
describe a particular state in a wide range of nuclear arrangements. The relevance 
of some configurations may vary along the energy potential hypersurface and 
omission of an important reference configuration near a stationary point may lead 
to a wrong geometry prediction. At this point it is important to keep in mind that, 
as the number of reference configurations increases, the limit of the MRD-CI space 
generated is the FCI space. This feature is clearly shown in a particular example 
below. The number of generated configurations in a MRD-CI treatment grows 
rapidly as the number of electrons and/or the number of reference configurations 
increases. Thus it is important to test the results obtained with perturbatively 
corrected MRD-CI wave functions. In the standard MRD-CI method the configura- 
tions included in the CI space are chosen within a given selection threshold. Since 
geometry optimization using gradient techniques has to be done using a preset 
selected CI space, it may be critical to determine which selected CI space should be 
used. It is well known that the weight of many configurations in the CI wave function 
may change strongly with the molecular geometry. Thus the weight of the corres- 
ponding single and double excitations may also change. Consequently, given a suit- 
able reference set of configurations, an incorrect selection of CI space may lead to 
wrong geometry predictions. Particular examples of this feature are discussed below. 

In the next sections, we present a detailed comparison of the molecular 
geometries computed at the FCI and MRD-CI levels for the X3B1, a 1A1, biB1 and 
clA1 states of CH2, the X2B1 and AZA~ states of NH2 and the X1A'~ state of BH3. 
First of all we compare the FCI results with those obtained at the MRD-CI level 
using a selection threshold of zero, hereafter denoted (MRD-CI, T =0), analyzing 
in a particular example the effect of increasing the number of reference configura- 
tions. Secondly, we compare the (MRD-CI, T =0) results with those obtained by 
choosing different values of the selection threshold, hereafter denoted (MRD-CI, 
T > 0) level in ~thartree. 

2 Computational methods and technical details 

In the present study we have employed the Huzinaga-Dunning [21, 22] double- 
zeta basis set contracted as (9s5p/4s2p) for B, C and N, and (4s/2s) for H, with 
scaled exponents, augmented by polarization functions with orbital exponents 
~d(B) =0.7 and ~o(N) =0.85, while for C we used ~d =0.74 and C~d =0.51 for states 
of Ba and A1, respectively, as suggested by Bauschlicher et al. [23]. For H we used 
~p = 1.0 as in Ref. [6]. In the FCI and MRD-CI calculations, only the valence 
electrons were explicitly correlated, namely, the ls electrons of B, C and N were 
frozen as a core. In addition, for NHz and BH3 the highest energy virtual orbital 
was excluded from the FCI and MRD-CI procedures. 
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The MRD-CI calculations were carried out by using the standard procedure of 
Buenker and Peyerimhoff [18-20] which employs the table CI algorithm [24]. 
Different levels of MRD-CI wave functions are considered in the present work. 
Since we are interested mainly in geometry optimization, we have omitted in the 
MRD-CI calculations the extrapolation procedure. A detailed comparison be- 
tween MRD-CI extrapolated energies and FCI energies are given in Ref. [16]. In 
the (MRD-CI, T =0) calculations the effect of the unlinked clusters (simultaneous 
pair correlation) has been estimated by using the Davidson-Langhoff correction 
analogue for multireference wave functions [25-27] of Eq. (1). 

AEvc, = (1-- ~ (c~)Z)AEMRo-c~. (1) 

The sum runs over the squares of the coefficients C; of the reference configurations 
and A EMRD-O is the difference between the calculated MRD-CI energy and 
the obtained by solving the M x M reference secular equation, M being the 
number of symmetry adapted functions (SAFs) generated from the reference 
configurations. Hereafter such a correction will be denoted by (MRD-CI + Q). 
Throughout this work, the notation nM is used to describe the number of reference 
configurations. 

The FCI calculations were performed by using a program [28] based on the 
a vector procedure [29] for computing the effect of the electronic Hamiltonian 
matrix//, on a trial vector C based on Slater determinants (SD). The technique of 
Handy [30] of separating the SD set into alpha strings and beta strings is used. 
Finally, following Olsen et al. [31], the electron contribution is divided into three 
terms, e.g. two-electron excitations in the alpha spin space, two-electron excitations 
in the beta spin space and two-electron excitations, one in the alpha and one in the 
beta spaces. The lowest-lying eigensolution of H is obtained using the three-term 
recurrence method proposed by van Lenthe and Pulay [32] improved by us [33]. 
This method also allows one to obtain roots of excited states if the trial vector C is 
quite close to the solution [33]. 

A new algorithm, recently reported by one of us [34], has been used in the 
geometry optimizations. This algorithm is based on the conjugated gradient 
technique, called Restricted Quasi-Newton-Raphson, as proposed by Fletcher 
[35]. The molecular geometries are considered optimized when the gradient norm 
is lower than 10 -5. Gradients were calculated numerically. Since the CI energy is 
stationary with respect to first-order variations of the CI parameters, the energy 
derivative is evaluated in the following way: 

OE 8{ijlkl} 
= E ax---7- (2) 

i jk l 

where II~jk~ is an element of the two-electron reduced density matrix, {ij[ kI} is an 
element of the two-electron average Hamiltonian or Bopp matrix [36] and xi a nu- 
clear coordinate. The i, j, k, l, indixes denote molecular orbitals (MOs). The Bopp 
matrix is defined as 

1 ~ (km[ ml) 1 1 h (imlmj))3k,+,Sij(hk,--2," ))+(ijlkl)l}, 

(3) 
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where his are the one-electron integrals, (ij[kl) are the two electron integrals and 
N is the total number of the electrons in the molecule. The latter definition implies 
that the / /mat r ix  is evaluated as 

n;sk~ = (~1EisEk~l ~) ,  (4) 
where/~is are the so-called shift operators [37] and 7 t is the electronic state wave 
function. The derivative of the Bopp operator is computed by finite differences, 
namely, the self-consistent field (SCF) MOs are computed at the perturbed molec- 
ular geometry, then the Bopp matrix (3) is constructed and, finally, the energy 
derivative is calculated by using Eq. (2). 

3 Results and discussion 

As indicated above, the results presented in this section will be analyzed from two 
different points of view. Firstly, we compare the results obtained at the FC! and 
(MRD-CI, T = 0) levels of theory. The main goal is to investigate the behavior of 
both treatments from the geometry-optimization point of view. Secondly, we will 
analyze the behavior of the perturbatively selected CI space (MRD-CI, T > 0) 
along the geometry-optimization process. 

3,1 Low-lying electronic states of CH 2 

The X3B1, a~A1 and clA1 electronic states of methylene have received a great deal 
of attention, both from an experimental and theoretical point of view [38-47], and 
have been used to perform benchmark FCI single-point calculations [6, 9]. We 
have optimized the equilibrium geometry of these states and also those correspond- 
ing to the biB1 electronic state. The adiabatic excitation energies calculated at the 
FCI and (MRD-CI, T =0) levels are given in Table 1. 

3.1.1 X3B1 and blBa states 

The geometrical results obtained for the XaB1 and blBx states of CH 2 are 
displayed in Table 2. Both states are well described by a single electronic configura- 
tion, namely, 1a22a~lb223ax lbl.  For both states we have used the SCF MOs of the 
X3B1 state to carry out the CI calculations. The SCF treatment gives a correct 
description of the X3B1 state with an error in the HCH angle of about 3.5 ° as 
compared with the experimental value [47-t. 

The agreement between (FCI) and (MRD-CI, T =0) results is very good, and 
the error in e(HCH) is of 0.1 ° for both triplet and singlet states, respectively. The 
latter is particularly relevant if one takes into account the dimensions of the 
eigenvatue problems solved, namely, 943 724 SDs (FCI) versus 9039 SAFs (MRD- 
CI, T =0) for the triplet and 1 311 624 SDs (FCI) versus 8098 SAFs (MRD-CI, 
T = 0) for the singlet. The adiabatic excitation energy calculated at the (MRD-CI, 
T =0) and FCI levels for the biB1 state are in excellent agreement. 

As mentioned in Sect. 1, the accuracy of the results obtained at truncated 
MRD-CI levels, namely, (MRD-CI, T >0), depends on both the molecular ge- 
ometry at which the CI space is selected and the selection threshold. Thus, for 
XaBI, starting at R(CH) = 1.05 A and e(HCH) = 110.0 ° the optimized value of the 



A geometry optimization benchmark 373 

Table 1. Calculated adiabatic excitation energies (in eV) at 
different levels of theoretical t reatment a 

State FCI MRD-CI  MRD-CI  + Q  

CH2 
X3B1 0.00 0.00 0.00 
alA1 0.52 b 0.54 b 0.51 b 

0.52 c 0.56 c 0.51 ~ 
blB1 1.67 1.66 1.66 
clA~ 2.83 2.82 2.82 

NH2 
X2BI 0.00 0.00 0.00 
A2A 1 1.47 1.46 1.48 

Results obtained combining the energies given in the foot- 
notes of Tables 2-5  
h CI calculations carried out  with the M O  basis of 3B~ 
c CI calculations carried out  with the M O basis of 

1A 1 

Table 2. Compar ison  of the equilibrium geometries calculated at different levels of theory for the X3B1 
and biB1 states of CHf l  

Method Dimension b Initial geometry Final geometry c 
R(CH) ~(HCH) R(CH) o~(HCH) A R  d Ao~ a 

X3B1 

SCF 1 1.05 110.0 1.074 129.4 
MRD-CI  (4M): 
T =3  1351 1.05 110.0 1.083 130.8 - 0.001 - 1.6 
T =1 1610 1.05 110.0 1.083 131.6 - 0.001 - 0 . 8  
T =3  1336 1.074 129.4 1.083 132.3 - 0.001 - 0.1 
T = 1 1604 1.074 129.4 1.083 132.1 0.0 - 0.3 
T = 0  9039 1.05 110.0 1.084 132.4 0.0 - 0.1 
FCI 943 724 1.05 110.0 1.084 132.5 

biB1 
MRD-CI  (SM): 
T =3  1032 1.074 129.4 1.080 140.1 0.0 - 1.2 
T = 1 1387 1.074 129.4 1.081 140.3 0.0 - 1.0 
T = 0 8098 t.074 129.4 1,081 141.3 0.0 0.1 
FCI 1311 624 1.074 129.4 1.081 141.2 

" Bond distances in ,~ and bond angles in degrees 
b Number  of SDs (FCI) or SAFs (MRD-CI) of the CI space 
c The energies (in hartree) at the opt imum geometries are: 
- for X3BI: -38.928217 (SCF), -39.043809 (MRD-CI,  T =0), -39.047989 (MRD-CI +Q)  and 
- 39.046266 (FCI) 

- for b iB1: - -39 .982766 (MRD-CI,  T =0), --38.987020 (MRD-CI +Q)  and -39.984927 (FCI) 
a For the (MRD-CI,  T >0)  results A R  and A~ are defined as the difference between the values 
of these parameters optimized at the (MRD-CI,  T >0) and (MRD-CI, T =0)  levels, while for the 
(MRD-CI,  T =0) results as the difference between the values optimized at the (MRD-CI,  T =0) and 
FCI levels 
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latter parameter differs by - 1.6 ° (MRD-CI, T = 3) and - 0.8 ° (MRD-CI, T = 1) 
from the value optimized at the (MRD-CI~ T =0) level. Starting at the SCF 
optimized geometry, namely, R(CH) = 1.074 A and c~(HCH) = 129.4 °, these differ- 
ences are reduced to - 0.1 ° (MRD-CI, T = 3) and - 0.3 ° (MRD-CI, T = 1). For  
biB1, similar trends are observed regarding the selection threshold, with differences 
of 1.0 ° in c~(HCH) and 0.0 A in R(CH) for (MRD-CI, T = 1). From Table 2 we 
conclude that good results are obtained for the X3B1 and blB~ states solving 
secular problems of 1604 and 1387 SAFs respectively. On the other hand, the 
amount of computation time saved with respect to the (MRD-CI, T =0) calcu- 
lations, which involve a secular problem of about 9000 SAFs, is substantial. 

3.1.2 The alA1 state 

The alA 1 state has two important  configurations at the equilibrium geometry (the 
FCI coefficients are - 0 . 9 5  [la~2a~3a~lb~] +0.18[la~2a~lb21b2Z]). Benchmark 
FCI calculations on the energy splitting between X3B1 and alA~ have been 
extensively analyzed by Bauschlicher et al. [6] using the same DZP basis set and 
compared with MRCI calculations. Knowles et al. [16] compared resulted of FCI 
and MRD-CI  calculations carried out at different selection thresholds. In the 
present work we compare the optimized geometries computed at the FCI and 
MRD-CI levels. We are also interested in analysing the dependence of the results 
on the orbital basis. Therefore, we have repeated for each theoretical treatment the 
geometry optimization with the SCF vectors of the X3Ba and a~Aa states. Results 
are summarized in Table 3. 

The geometries optimizedoat the FCI level using both orbital basis sets 
are identical ( R ( C H ) = l . 1 2 0 A  and ~(HCH)=101.8°). The energy differs by 
3.5 × 10 -5 hartree. Similar FCI energy dependence on the orbital basis has been 
described by Bauschlicher et al. [4] in benchmark FCI calculations on HF and 
NHz.  These authors indicate that the slight difference arises from the frozen-core 
approximation constraint. Probably, the fact of keeping fixed the exponents of the 
AO basis also has a minor effect. 

Calculations carried out at the (MRD-CI, T = 0) level provide results of very 
good quality in both orbital basis. For  the geometrical parameters R(CH) and 
c~(HCH), the differences are less than 0.003 A and 0.4 °, respectively. The calculated 
excitation energy (see Table 1) differs from the FCI result by 0.02-0.04 eV at 
(MRD-CI, T =0)  and 0.01 eV at (MRD-CI +Q), depending on the orbital basis 
used. \ 

Further calculations carried out at truncated MRD-CI levels show the same 
trends observed for the X3B1 state. Similar results are obtained using both orbital 
basis. Again, the reduction of the computational effort is evident as shown by the 
dimensions of the secular problems in each case (Table 3). 

3.1.3 The clA1 state 

A previous theoretical study by R6melt et al. [41] on the ctA1 state indicates that it 
prefers a linear equilibrium geometry. In a linear geometry this state becomes 
a 1Z~ + state possessing the (rt 2 +n~) electronic configuration, which in the lower 
symmetry subgroup C2v corresponds to the (lb 2 + 3a~) configuration (see Table 
3 of Ref. [43]). Consequently, the z 2 2 2 2 2 2 2 la12a~3allb2 and la12a~lbllb2 configurations 
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Table 3. Compar i son  of the equilibrium geometries calculated at different levels of theory for the alA1 
state of CHz a 

Method Dimension b Initial geometry Final geometry ~ 
R(CH) ~(HCH) R(CH) c~(HCH) A R  a Ao~ d 

A) SCF vectors of X3B1 
MRD-CI  (8M): 
T =3  919 1.05 110.0 1.114 t03.8 - 0.004 1.6 
T = 1 1277 1,05 110.0 1.115 102.7 - 0.002 0.6 
T = 0  6139 1.05 110.0 1.117 102.1 0.002 0.3 
FCI 1 333 768 1.05 t 10.0 1.120 101.8 

B) SCF vectors of alA~ 
MRD-CI  (7M): 
T =3  898 1.05 110.0 t.114 103.6 -- 0.003 1.5 
T = 1 1235 1.05 t 10.0 1.115 102.8 - 0.002 0.6 
T = 0  6871 1.05 110.0 t.117 102.2 - 0.003 0.4 
FCI 1 333 768 1.05 110.0 1.120 101.8 

a Bond distances in A and bond angles in degrees 
b Number  of SDs (FCI) or  SAFs (MRD-CI) of the CI space 

The energies (in hartree) at the optimized geometries are: 
1) Using SCF vectors of 3B1:-39.023806 (MRD-CI,  T =0), -39,029406 (MRD-CI +Q)  and 

-39.027163 (FCI) 
2) Using SCF vectors of 1A~:-39.023379 (MRD-CI, T =0), -39.029331 (MRD-CI +Q) and 

-39.027198 (FCI) 
d See footnote d of Table 2 

in Czv symmetry, hereafter refered to configurations A and B, respectively, should 
have the same coefficient in the wave function at the linear geometry. Moreover, in 
bent geometries, both configurations should be included in any CI treatment. 

We began the geometry optimization at e (HCH) = 110 ° using the SCF vectors 
of the X3Bt state in all CI calculations. The results are shown in Table 4. 
Unexpectedly, the FCI calculations led to a bent optimized geometry 
(~(HCH) = 168.5°), the coefficients of the A and B configurations in the wave 
function being 0.63 and 0.73, respectively. 

Different types of MRD-CI treatments were employed. First of all, at the 
(MRD-CI, T =0) level we optimized the geometry using different sets of reference 
configurations denoted as nM. As nM increases, higher excitations are included in 
the MRD-CI wave function and, therefore, the CI approaches to the FCI limit. 
Here, by a FCI limit we mean both the molecular geometry and energy calculated 
at the FCI level. The results are displayed in Table 4, while Fig. 1 shows the errors 
obtained in each (MRD-CI, T =0)  treatment with respect to the FCI limit as nM 
increases. For  the sake of simplicity, we show only the errors in ~(HCH) and the 
energy calculated at the (MRD-CI, T =0) and (MRD-CI +Q)  levels, but not the 
errors in the CH distance. 

When only the two configurations A and B are considered as the reference set 
(2M), there are only single and double excitations in the MRD-CI space. The 
geometry optimization leads to a linear geometry. The error in the CH distance is 
0.005 A and the diagonalized energy differs by 7.0 x 10 -3 hartree from the FCI 
energy. In the (MRD-CI, T =0)  2M wave function the two configurations A and 
B have the same weight (C 2 percentage is 46.85%), as expected for a linear 
geometry. 
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Table 4. Compar i son  of the equil ibrium geometries calculated at different levels of theory for the clA1 
state of CHz a 

Method Dimension ~ Final geometry Energy c ~ C~ 
R(CH) e(HCH) 

MRD-CI ,  T = 0  
2M 1232 1.070 180.0 - 38.935291 ( - 38.943667) 0.937 
4 M  1964 1.079 170.3 - 38.936920 ( - 38.943945) 0.943 

10M 5218 1.074 169.1 - 38.939340 ( - 38.944239) 0.955 
15M 9975 1.075 168.1 - 38.940054 ( - 38.944208) 0.959 
19M 13 271 1.075 168.5 - 38.940838 ( - 38.943862) 0.965 
26M 18 875 1.075 168.5 - 38.941403 ( - 38.943593) 0.971 
33M 23 028 1.075 168.7 - 38.941697 ( - 38.943344) 0.975 
FCI  1 333 768 1.075 168.5 - 38.942333 

Bond distances in ,~ and bond angles in degrees 
b Number of SDs (FCI) or SAFs (MRD-CI) of the CI space 
c MRD-CI +Q energies are given in parentheses 

15 

10 

"~ 5 

0 

-5 

-80 

o AE (MRD-Cl) | -M i 

-60 -40 -20 0 20 
AE (Hartree* 10 4) 

Fig. 1. Errors  of MRD-CI ,  T = 0  
with respect to FCI  limit as 
M increases. The FCI  limit 
corresponds to the origin of 
coordinates 

The next two sets of reference configurations (4M and 10M) generate up to 
quadruple excited configurations in the MRD-CI space. With this treatment the 
error in the geometrical parameters is reduced significantly. All the remaining sets 
of reference configurations (15M, 19M, 26M and 33M) generate up to sextuple 
excitations and from Fig. 1 it is clearly seen that the results converge to the FCI 
limit. The best calculations (33M) are in an excellent agreement with the FCI 
results. This is particularly important if one takes into account the dimensions of 
the different secular problems involved, namely 1 333 768 SD in the FCI case versus 
only 23028 SAF in the best MRD-CI calculations. Note that small MRD-CI 
spaces conveniently generated provide results as good as the FCI ones. (See Table 4). 

Another point of interest is to observe the behaviour of the Davidson correction 
(MRD-CI +Q)  shown schematically in the right-hand side of Fig. 1. The (MRD- 
CI + Q) calculated energies are in all cases below the FCI energy, as indicated by 
the positive sign of the error. When the quality of the wave functions is increased by 
augmenting the number of reference configuration, the error first augments (up to 
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1.0x 10-3har t ree  for the 10M set) but decreases progressively (to 1.0x 10 -3 
hartree for the 33M set) converging to the FCI limit. However, in all cases, 
the error in the Davidson correction is in the range 1.0 x 1 0 -  3-1.9 x10  -4 
hartree. 

The excitation energy calculated at the (MRD-CI, T =0) level is in very good 
agreement with the FCI result, as shown in Table 1. For the ClAl state we took the 
energy values of the 15M set, because it provides an MRD-CI wave function of the 
same quality as that obtained for the X3Ba state. 

Since we were surprised to find a bent equilibrium geometry for clA1 we 
decided to go a step further and calculate the inversion barrier. The calculations 
were done at the FCI, (MRD-CI, T =0) 15M and (MRD-CI, T =0) 33M levels. 
Obviously, in all cases the inversion occurs at e(HCH) = 180 °. We checked that in 
this stationary point the approximate hessian possesses a single neogative eigen- 
value. For  this transition state s the optimized CH distances in A at differet 
levels of theory are (R(CH) in A) 1.073 (FCI), 1.073 (MRD-CI, 15M) and 1.073 
(MRD-CI, 33M) and the energies (in hartree) are: -38.942114 (FCI), -38.939878 
(-38.943910)  (MRD-CI, 15M) and -38.941520 (-38.942925) (MRD-CI, 33M) 
(MRD-CI + Q values in parenthesis). 

According to these results, we find that the inversion barrier is less than 
49 cm-  1 in the FCI case. Therefore, we are sceptical regarding the result that c~A~ 
has a bent equilibrium geometry. This unexpected result may be addressed to two 
different facts. First the effect of having frozen the ls electron as a core, since in this 
case FCI results are not exactly invariant because the frozen core and second the 
poor quality of the basis set. Correlating all electrons leads to a FCI problem 
greater than 40 x 10 6 SDs that is outside of our computer capabilities, but we have 
carried out a further (MRD-CI, T = 0) optimization with eight electrons. We have 
included 18 configurations in the reference set, which leads to a secular problem of 
29 812 SAFs and a wave function whose 2;; C~ is 0.964. The optimized parameters 
are R(CH) = 1.074 A and ~(HCH) = 168.1 °. Computations of such quality have 
been proved to give results that agree very well with the FCI ones and therefore we 
are confident that FCI calculations would provide similar results. We believe that 
this may be an effect of the poor  quality of the basis set used. We think further 
investigations should be done in this sense. However, the results obtained in this 
work indicate that the potential energy surface of this state is very flat. On the other 
hand, one may conclude that the MRD-CI method reproduces the FCI calculated 
molecular geometries and energies very well. 

3.2 The X2B1 and AZAl states of NHz 

Several theoretical studies exist in the literature for the X2B1 and A2A1 states of 
NHz [,48-51] and Benchmark FCI calculations with a DZP basis have been 
carried out at different geometries [4]. These FCI results have been compared with 
those obtained from different correlation methods (SDCI, SDTQCI, CPF, MRCI) 
[-4], including MRD-CI at different levels of truncation [16]. For  these states 
we have carried out the same treatments given above for CHz. The results are 
displayed in Table 5. Since we are interested in analyzing the effect of optimizing 
a particular state at the MRD-CI level, using an orbital basis from the another 
state, all CI calculations were done in the basis of the SCF orbitals of the X2B1 
state. 
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Table 5. Comparison of the equilibrium geometries calculated at different levels of theory for the X2B1 
and A2A1 states of NH2 a 

Method Dimension b Initial geometry Final geometry c 
R(NH) ~(HNH) R(NH) ~(HNH) A R  c A ~  c 

XZB1 
SCF 1 1.10 120.0 1.012 105.0 
MRD-CI (4M): 
T =3 1445 1.10 120.0 1.028 104.6 - 0.002 1.3 
T = 1 1715 1.10 120.0 1.028 104.0 - 0.001 0.7 
RefCI d 9 1.10 120.0 1.017 106.2 
T =3 1428 1.00 106.0 1.027 103.6 - 0.002 0.4 
T = 1 1661 1.00 106.0 1.028 103.5 - 0.002 0.2 
T =0  11 530 I.I0 120.0 1.029 103.2 
FCI 5373494 1.10 120.0 t.032 102.9 

A2A1 

MRD-CI (SM): 
T =3 1371 1.10 120.0 1.0 142.1 0.0 -- 1.3 
T =1 1822 1.10 120.0 1.0 142.3 0.0 -- 1.1 
RefCI d 11 1.10 120.0 0.991 149.0 
T =3 1377 1.00 149.0 0.998 144.1 - 0.002 0.7 
T = I 1751 1.00 149.0 1.0 143.9 - 0.001 0.4 
T =0  11 113 1.10 120.0 1.0 143.5 - 0.002 0.2 
FCI 5 381 446 1.10 120.0 1.001 143.3 

a Bond distances in ,~ and bond angles in degrees 
b Number of SDs (FCI) or SAFs (MRD-CI) of the CI space 
c Energies (in hartree) at the optimized geometries are: 

1) for XZBI: - 55.573522 (SCF), - 55.737785 (MRD-CI, T =0), - 55.745157 (MRD-CI +Q)  and 
- 55.743324 (FCI) 

2) for A2AI: - 55.684167 (MRD-CI, T =0), - 55.690797 (MRD-CI +Q)  and - 55.689196 (FCI). 
Calculations over XZB1 vectors 
d See footnote d of Table 2 

The (MRD-CI, T =0) and FCI results are in an excellent agreement. The errors 
in the geometrica.1 parameters are 0.003 A (NH distance) and 0.3 ° (c~(HNH)) for 
X2B1 and 0.002 A (NH distance) and 0.2 ° (e(HNH)) for AZA~. Moreover, the 
excitation energies (see Table 1) calculated at the (MRD-CI, T =0) and (MRD- 
Ci + Q) levels, are also in very good agreement, the errors being only 0.01 eV with 
respect to FCI. The effect of the orbital basis appears to be unimportant in 
optimizing equilibrium geometries at the MRD-CI level. It is also worth emphasiz- 
ing again that (MRD-CI, T =0) provides results of FCI quality while solving 
secular problems of modest size. Thus Table 5 shows that the FCI space has about 
5 400000 SDs, while the MRD-CI space contains only about 12000 SAFs. 

Further reduction of the computational effort can also be achieved by using 
selected MRD-CI spaces, the dimensions of the secular problems being reduced to 
1371-t822 SAFs (see Table 5). Beginning at ct(HNH) = 120 °, far from the equilib- 
rium geometry of both states; we obtain optimized geometries with errors between 
0.7-1.3 ° in the ~(HNH) angle. A better choice of the starting points could be the 
SCF-optimized geometry, because both states are welt described at this level of 
theory. However, in many cases, there is not an adequate single-configuration 
description of a given electronic state, so a different starting point should be taken. 
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Table 6. Comparison of equilibrium geometries calculated at different levels of 
theory for the XIA] state of BH3" 
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Method Dimension b Initial Final 
geometry geometry c 
R(BH) R(BH) AR d 

SCF 1 1.10 1.192 
SDCI 1002 1.19 1.191 - 0.002 

MRD-CI (5M): 
T =3 771 1.19 1.192 -- 0.001 
T =1 961 1.19 1.192 - 0.001 
T =0 7964 1.19 1.192 - 0.001 
FCI 3 368 924 1.19 1.193 

" Bond distances in ~, and bond angles in degrees 
b Number of SDs (FCI) or SAFs (MRD-CI) of the CI space 
c Energies (in hartree) at the optimized geometry are: -26.392443 (SCF), 
-- 26.499524 (SD-CI), - 26.504416 (SD-CI +Q), - 26.501573 (MRD-CI, 
T =0), -26.505119 (MRD-CI +Q) and - 26.504049 (FCI) 
d See footnote d of Table 2 

Since in any multireference CI treatment good results are achieved when the set of 
reference configurations accounts for about 90% of the wave function, it is likely 
that such a reference set gives a good zero-order description of a particular state. 
Therefore, to get good starting points we optimized the geometries of both states 
using a M x M C! space, where M is the number of SAFs generated by the reference 
configurations. These CI spaces are denoted as Ref C! in Table 5. The optimized 
geometries at this CI level were taken as starting points for the subsequent 
truncated MRD-CI  calculations. In this way, we obtained very good results at the 
truncated MRD-CI  level, depending on the selection threshold (see Table 5), with 
little computational effort. 

3.3 The XIA'I ground state o f  Borane 

The last example we have studied is the ground state of BH3. For this system, the 
calculations were performed at the SCF, SDCI, MRD-CI and FCI levels of theory. 
The dimensions of the secular problems solved in the different CI approaches 
ranges from 771 to 7961 SAFs, while the FCI calculations involved a CI space of 
3 368 924 SDs. All calculations were done in the C2v symmetry group. Table 6 
collects the results. 

The ground state of Borane is well described by a single configuration (the 
leading determinant in the FCI wave function has a coefficient of 0.9738). Conse- 
quently, it is likely that all theoretical methods provide good results. In fact, the 
errorsoin the calculated BH distance with respect to the FCI value are less than 
0.002 A. The truncated MRD-CI  calculations involving small secular problems 
provide very good results, even better than those of the SDCI approach. The 
optimized equilibrium geometry is similar to both the experimental and theoretical 
report in the literature [52-55]. The errors in the calculated energy (hartree) 
with respect to the FCI value show the same trends pointed out above, namely 
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-0 .004525  (SDCI), 0.000367 (SDCI  + Q), -0 .002476  (MRD-CI ,  T =0)  and 
0.00170 ( M R D - C I  + Q )  I.thartree. It  is wor th  noting that  the (SDCI + Q )  energy 
approaches more  to the F C I  value than the ( M R D - C I  + Q )  energy. However,  
augment ing the number  of reference configurations the errors in the M R D - C I  and 
M R D - C I  + Q  energies should decrease, as shown explicitly in Fig. 1 for the clA1 
state of CH2.  

4 Summary  and conclusions 

We have reported the equilibrium geometries for various electronic states of CH2, 
NH2 and BH3 optimized using FCI  and M R D - C I  methods with a D Z P  basis set. 
In all cases, the results obtained at the (MRD-CI ,  T =0)  and FCI  levels of theory 
are in an excellent agreement. For  the alA1 state of CH2, the geometry optimiza- 
t ion has been carried out  in all C!  treatments using two different orbital basis sets, 
namely, the SCF vectors of the X3B1 and alA~ states. The equilibrium geometries 
obtained in both  cases are nearly identical. The clA1 state of CH2 is predicted to 
have a bent equilibrium geometry with a barrier to linearity lower than 50 cm - 1 at 
the FCI  level. Consequently,  further investigations with better basis sets should be 
under taken to ascertain the true equilibrium geometry of this state. The M R D - C I  
method  appears to reproduce the FCI  potential energy surface very well. Finally, 
the geometrical  parameters  optimized with a t runcated M R D - C I  t reatment  com- 
pare very well with those obtained at the (MRD-CI ,  T - - 0 )  level, despite the 
substantial reduct ion of the computa t ional  effort involved. 
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